Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Asunto principal
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Sci Rep ; 13(1): 9947, 2023 06 19.
Artículo en Inglés | MEDLINE | ID: mdl-37336933

RESUMEN

It is of paramount importance in plant breeding to have methods dealing with large numbers of predictor variables and few sample observations, as well as efficient methods for dealing with high correlation in predictors and measured traits. This paper explores in terms of prediction performance the partial least squares (PLS) method under single-trait (ST) and multi-trait (MT) prediction of potato traits. The first prediction was for tested lines in tested environments under a five-fold cross-validation (5FCV) strategy and the second prediction was for tested lines in untested environments (herein denoted as leave one environment out cross validation, LOEO). There was a good performance in terms of predictions (with accuracy mostly > 0.5 for Pearson's correlation) the accuracy of 5FCV was better than LOEO. Hence, we have empirical evidence that the ST and MT PLS framework is a very valuable tool for prediction in the context of potato breeding data.


Asunto(s)
Solanum tuberosum , Solanum tuberosum/genética , Análisis de los Mínimos Cuadrados , Modelos Genéticos , Fitomejoramiento , Fenotipo , Genómica/métodos , Genotipo
2.
Genes (Basel) ; 14(6)2023 06 20.
Artículo en Inglés | MEDLINE | ID: mdl-37372482

RESUMEN

Inbreeding depression (ID) is caused by increased homozygosity in the offspring after selfing. Although the self-compatible, highly heterozygous, tetrasomic polyploid potato (Solanum tuberosum L.) suffers from ID, some argue that the potential genetic gains from using inbred lines in a sexual propagation system of potato are too large to be ignored. The aim of this research was to assess the effects of inbreeding on potato offspring performance under a high latitude and the accuracy of the genomic prediction of breeding values (GEBVs) for further use in selection. Four inbred (S1) and two hybrid (F1) offspring and their parents (S0) were used in the experiment, with a field layout of an augmented design with the four S0 replicated in nine incomplete blocks comprising 100, four-plant plots at Umeå (63°49'30″ N 20°15'50″ E), Sweden. S0 was significantly (p < 0.01) better than both S1 and F1 offspring for tuber weight (total and according to five grading sizes), tuber shape and size uniformity, tuber eye depth and reducing sugars in the tuber flesh, while F1 was significantly (p < 0.01) better than S1 for all tuber weight and uniformity traits. Some F1 hybrid offspring (15-19%) had better total tuber yield than the best-performing parent. The GEBV accuracy ranged from -0.3928 to 0.4436. Overall, tuber shape uniformity had the highest GEBV accuracy, while tuber weight traits exhibited the lowest accuracy. The F1 full sib's GEBV accuracy was higher, on average, than that of S1. Genomic prediction may facilitate eliminating undesired inbred or hybrid offspring for further use in the genetic betterment of potato.


Asunto(s)
Solanum tuberosum , Solanum tuberosum/genética , Endogamia , Genotipo , Tetraploidía , Fitomejoramiento , Genómica
3.
G3 (Bethesda) ; 12(1)2022 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-34849763

RESUMEN

Potato breeding relies heavily on visual phenotypic scoring for clonal selection. Obtaining robust phenotypic data can be labor intensive and expensive, especially in the early cycles of a potato breeding program where the number of genotypes is very large. We have investigated the power of genomic estimated breeding values (GEBVs) for selection from a limited population size in potato breeding. We collected genotypic data from 669 tetraploid potato clones from all cycles of a potato breeding program, as well as phenotypic data for eight important breeding traits. The genotypes were partitioned into a training and a test population distinguished by cycle of selection in the breeding program. GEBVs for seven traits were predicted for individuals from the first stage of the breeding program (T1) which had not undergone any selection, or individuals selected at least once in the field (T2). An additional approach in which GEBVs were predicted within and across full-sib families from unselected material (T1) was tested for four breeding traits. GEBVs were obtained by using a Bayesian Ridge Regression model estimating single marker effects and phenotypic data from individuals at later stages of selection of the breeding program. Our results suggest that, for most traits included in this study, information from individuals from later stages of selection cannot be utilized to make selections based on GEBVs in earlier clonal generations. Predictions of GEBVs across full-sib families yielded similarly low prediction accuracies as across generations. The most promising approach for selection using GEBVs was found to be making predictions within full-sib families.


Asunto(s)
Solanum tuberosum , Teorema de Bayes , Genómica/métodos , Genotipo , Humanos , Modelos Genéticos , Fenotipo , Fitomejoramiento , Polimorfismo de Nucleótido Simple , Densidad de Población , Selección Genética , Solanum tuberosum/genética , Tetraploidía
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA